
Confusum Contractum:
Confused Deputy Vulnerabilities in Ethereum Smart Contracts

Abstract
Smart contracts are immutable programs executed in the con-
text of a globally distributed system known as a blockchain.
They enable the decentralized implementation of many inter-
esting applications, such as financial protocols, voting sys-
tems, and supply-chain management. In many cases, multiple
smart contracts need to work together and communicate with
one another to implement complex business logic. However,
these smart contracts must take special care to guard against
malicious interactions that might lead to the violation of a
contract’s security properties and possibly result in substantial
financial losses.

In this paper, we introduce a class of inter-program com-
munication flaws that we call confused contract vulnerabil-
ities. This type of bug is an instance of the confused deputy
vulnerability, set in the new context of smart contract inter-
communication. When exploiting a confused contract bug,
an attacker is able to divert a remote (inter-contract) call in a
confused (victim) contract to a target contract and function
of the attacker’s choosing. The call performs sensitive oper-
ations on behalf of the confused contract, which can result
in financial loss or malicious modifications of the persistent
storage of the involved contracts.

To identify opportunities for confused contract attacks at
scale, we implemented KAI, a system that is able to auto-
matically identify confused contracts and candidate target
contracts on the Ethereum mainnet. We leveraged KAI to ana-
lyze a total of 2,335,193 smart contracts deployed in the past
two years, and we identified 529 potential confused contracts.
When investigating these warnings, we discovered past and
present opportunities for confused contract attacks that could
have compromised digital assets worth more than one million
US dollars.

1 Introduction

In the past few years, the interest in blockchain-powered de-
centralized applications (dApps) has risen considerably. This

interest drove the market capitalization of Ethereum [17] –
the most popular blockchain platform for dApps – from 51
billion to 568 billion dollars in just one year (Nov. 2020 -
Nov. 2021) [69]. Despite the recent market correction, which
saw Ethereum’s market cap drop to 201 billion dollars [57],
the ecosystem is still able to attract huge investments. One
reason is the broad interest in and development of many types
of distributed applications.

Blockchain-powered applications are implemented via
smart contracts: immutable programs stored on the
blockchain in the form of bytecode, which is executed by
the Ethereum Virtual Machine (EVM) [65]. Users interact
with the system via signed transactions, wherein they specify
a smart contract’s function they want to invoke, together with
its arguments. The Ethereum network’s distributed consensus
mechanism produces a strict ordering of transactions, which
are emitted at regular intervals (∼12 seconds) in groups called
blocks. All participating nodes in the network execute each
transaction in order whenever a new block is created. Through
this process, the Ethereum network maintains a consistent
global state across all nodes.

Smart contract functions commonly manipulate financial
assets, such as tokens and Ether (ETH) [18], which is the
native cryptocurrency on the Ethereum network. Smart con-
tracts may also read and write their own persistent storage,
emit log events, and call functions of other contracts. Through
their functionality, smart contracts help to build the Decentral-
ized Finance (DeFi) [16] ecosystem: a complex network of
decentralized financial protocols enabled by the blockchain
infrastructure.

In contrast to the traditional financial system, DeFi
promises to bring an increase in both transparency and democ-
ratization of financial tools, together with full accessibility and
control over personal funds [49]. However, DeFi’s benefits
come at the cost of drastically increasing the risk of financial
losses. In fact, as smart contracts run on a public blockchain,
they can interact with – and be scrutinized by – anyone. In
particular, when a smart contract suffers from a security bug, a
successful attack from a malicious actor can potentially drain

1

millions of dollars worth of assets. It can be very hard, if not
impossible, to recover lost funds due to the immutability of
the blockchain network [50] and the intrinsic lack of a central
authority. The higher stakes for blockchain security attract a
multitude of different kinds of actors, who race toward discov-
ering security vulnerabilities in smart contracts. As a result,
a number of multi-million-dollar bug bounties were recently
awarded to white hat hackers [9].

Thanks to the attention from both security profession-
als and the academic research community, the impact and
prevalence of certain classes of vulnerabilities has been con-
siderably reduced in modern contracts. This includes inte-
ger overflow bugs, via the usage of safe math libraries [46],
and re-entrancy [6], via specific checks ensuring single en-
trance [45]. In addition, these and other “traditional” vulnera-
bilities have been the target of many automated verification
and bug-finding solutions [3, 4, 10, 25, 27, 31, 32, 39, 47, 52].

Interestingly, recent attacks made use of cross-contract vul-
nerabilities that have little to no automated discovery support,
and they can be difficult to identify even via manual reviews
performed by experts. An important property of smart con-
tracts is the fact that their public functions can be directly
called by any other programs on the blockchain at any point
in time. Hence, it is common for smart contracts to guard
sensitive functionality with access control checks that are de-
signed to accept interactions only from specific callers (these
can be user accounts or contracts). Unfortunately, the com-
plicated mix of inter-contract communication, and the often
convoluted and custom access control policies implemented
by smart contracts, can easily result in hidden logic bugs. An
example of such a bug is an inter-contract vulnerability that
affected one of the biggest DeFi platforms, PolyNetwork [48],
and led to a financial loss of $610 million in August 2021 [51].
In this case, the attacker exploited an inter-contract commu-
nication bug in one of the primary PolyNetwork contracts,
misdirecting one of its remote calls to another PolyNetwork
contract that is responsible for maintaining the list of active
administrators. Then, thanks to the existing trust relationship
between these two contracts, the attacker managed to add
themselves as a new administrator, escalating their privileges,
and ultimately draining a significant amount of funds.

The complexity, and the impact, of the PolyNetwork attack,
certainly calls for a deeper understanding of the roots of cross-
contract vulnerabilities and the development of automated
solutions that are not only able to identify bugs in a single
smart contract but rather find unsafe cross-contract interac-
tions across the entire ecosystem. In this paper, we do just
that. First, we introduce and characterize confused contracts,
an important class of cross-contract vulnerabilities. Then, we
present KAI, which is a first step in automatically detecting
such flaws.

In particular, in this paper, we make the following contribu-
tions:

• We describe the fundamental mechanics at the basis of
the confused contract class of bugs, which is an instance
of the confused deputy class of problems in the context
of inter-contract interaction.

• We propose a novel methodology to detect confused
contract attacks at scale, and we implement a prototype
system that we used to analyze 2,335,193 smart contracts
binaries, finding a total of 529 potential vulnerabilities.

• We further investigate a subset of the warnings raised by
KAI and confirm them by developing working exploits
that have the potential to jeopardize assets worth more
than one million US dollars.

2 Background

2.1 Blockchain

A blockchain is a decentralized, distributed ledger on which
the participating nodes collectively advance the state of an
append-only database. In particular, nodes record transactions
over the network and register the creation of new blocks in
the database. New data can only be added to the end of the
blockchain in the form of a new block that contains an or-
dered record of recent transactions. In turn, this creates a
permanent, tamper-evident history of all the transactions in
the network, allowing for a secure and transparent way to
store and transfer data or value. To motivate individuals to
actively contribute to the maintenance of the blockchain, a set
amount of cryptocurrency is awarded for creating each new
block.

2.2 Smart Contracts

Modern blockchains, such as the Ethereum blockchain [17],
are known to be “programmable blockchains.” Specifically, to-
gether with the standard currency-bearing user accounts [19],
this kind of blockchain supports the development of decen-
tralized applications (dApps) that can be used to create new
kinds of online services. From an implementation point of
view, dApps are created by developing smart contracts. The
code of a smart contract defines its business logic and imple-
ments the terms of an agreement between different parties.
For instance, a smart contract that sells digital assets might re-
quire a specific amount of cryptocurrency (e.g., ETH [18]) to
be deposited by a user before the user can register their owner-
ship of an asset. Smart contracts are usually developed using
high-level programming languages (e.g., Solidity [55], or
Vyper [61]). Once compiled, smart contracts are stored on-
chain in the form of bytecode and executed on-demand by the
Ethereum Virtual Machine (EVM).

2

2.3 Smart Contract Execution

While the execution state of a smart contract is defined by
many elements [30], in this paper, we focus on the following
four components: (1) program counter, (2) stack, (3) memory,
and (4) persistent storage.

Program Counter: The program counter keeps track of the
next instruction that needs to be executed.

Stack: The EVM is a stack-based virtual machine, that is,
values are pushed and popped onto the stack to perform
all arithmetic and control-transfer operations inside the
contract.

Memory: The memory is a byte-addressable volatile storage
for various EVM instructions. Similar to the stack, the
memory starts empty when a smart contract begins its
execution. As the code is running, instructions can read
and write data at different offsets in memory.

Persistent Storage: The storage is a key-value store with
256-bit keys and 256-bit values. The content of the stor-
age is kept on the blockchain, and hence, persists across
multiple smart contract executions. Similarly to memory,
specific opcodes (i.e., SLOAD, SSTORE [65]) can read-
/write data at different key slots in the storage.

2.4 Smart Contract Invocations

Any function of a smart contract that is explicitly marked
as public by the developer is a possible entry point for that
contract. That is, it can be directly invoked by any blockchain
user who sends a corresponding transaction (Tx), or another
contract that sends an internal transaction (iTx). When sub-
mitting a transaction that invokes the code of a contract, one
has to pay a fee (known as the gas fee), which is subtracted
from the balance of the transaction initiator.

Each transaction has a context. Such context includes the
msg.sender (determining the current address interacting
with a contract), the msg.value (specifying the amount of
ETH transferred), and the tx.origin (specifying the sender
of the initiating transaction [15]).

The execution of a smart contract in the EVM is quasi-
Turing-complete: the EVM can perform any computation
as long as the user initiating the execution has sufficient
ETH [18] to pay the required gas fee (note that there is an
upper limit to the gas fee that can be specified [20]). This
mechanism is a defense against denial of service and general
abuse of resources [8].

Each transaction includes a byte-string known as the
CALLDATA. The CALLDATA consists of (1) the first four
bytes, which identify the targetFunction to be executed,
and (2) the remaining bytes, which specify the arguments
passed to the function. The four bytes that select the target

function correspond to the KECCAK256 [64] hash of the func-
tion prototype.

Once a smart contract receives a transaction, the
targetFunction bytes are extracted from the CALLDATA
and used to dispatch the execution to the specified function.
The function body is then responsible for interpreting the
argument data. The computation can either complete success-
fully (i.e., the execution reaches the end of the function with
no error) or fail, resulting in a “revert” of the execution. If the
execution is reverted, any changes to the contract’s persistent
storage are rolled back.

During its execution, a smart contract can invoke functions
of other smart contracts, whose code will be executed as part
of the same transaction. This type of composable software
design enables the implementation of advanced application
protocols. The communication between different smart con-
tracts happens via so-called internal transactions, triggered
by one of four EVM opcodes, namely CALL, DELEGATECALL,
CALLCODE, and STATICCALL. These four opcodes differ in
terms of how the caller and callee interact with each other,
and how the call’s metadata is propagated.

To understand the fundamentals of the confused contract
vulnerability, it is necessary to discuss the effects of the dif-
ferent opcodes on the involved contracts (sender and receiver)
and their execution context. In particular, we look at how
caller information is propagated from the sender to the re-
ceiver, and whose persistent storage is accessed when the re-
ceiver is executing code that includes SLOAD/SSTORE opcodes.
In Figure 1, we summarize the main differences between the
execution models of these opcodes and the metadata propa-
gation during the internal transaction (iTx). One important
difference between each opcode is how persistent storage ac-
cess is handled. When Contract B uses CALL or STATICCALL
to call a function in Contract C, the receiver (target con-
tract C) accesses its own persistent storage when executing
SLOAD/SSTORE opcodes; in the case of STATICCALL, the per-
sistent storage is read-only. On the other hand, when Con-
tract B (the sender) uses either CALLCODE or DELEGATECALL,
a persistent storage operation performed by the code in Con-
tract C accesses the persistent storage of Contract B. A second
difference is how msg.sender is handled. Specifically, CALL
and CALLCODE change the msg.sender attribute of the trans-
action iTx to the address of the sender B. For the other two
opcodes, the msg.sender attribute remains unchanged and
holds the value of the originator of the transaction (which is
User A in our example).

All four opcodes that are used for smart contract commu-
nication require specific arguments [65] to be pushed on the
stack before the call:

gas: monetary fee for the execution of the callee’s code.

tAddr: the address of the callee.

value: amount of ETH to be sent together with the call (only
for CALL/CALLCODE).

3

addr:A

addr:B

Tx

msg.sender = A
tx.origin = A

addr:C

msg.sender = B
tx.origin = A

CALL

iTx addr:A

addr:B

Tx

msg.sender = A
tx.origin = A

addr:C

msg.sender = A
tx.origin = A

DELEGATECALL

iTx

r/wr/w

addr:A

addr:B

Tx

msg.sender = A
tx.origin = A

addr:C

msg.sender = B
tx.origin = A

STATICCALL

iTx addr:A

addr:B

Tx

msg.sender = A
tx.origin = A

addr:C

msg.sender = B
tx.origin = A

CALLCODE

iTx

r/wr

Figure 1: Overview of inter-contract communication operands and their semantics. Tx refers to the transaction initiated by a
user account (this is A in our example). iTx refers to an internal transaction between smart contracts. We highlighted in red the
elements that are relevant to the confused contract attack.

argOffset: byte offset in memory where the CALLDATA for
the iTx is expected to be located. The first four bytes
specify the tFunc signature, followed by the arguments
for the function.

argSize: size of the CALLDATA located at tAddr.

retOffset: byte offset in the memory where the return data
computed by the callee will be stored.

retSize: size of the return data computed by the callee.

In this work, we focus on the following key parts of
inter-contract communication: the transaction’s input, i.e.,
CALLDATA, the target address tAddr, and the target function
tFunc.

3 Motivation and Threat Model

A confused deputy vulnerability arises when a higher-
privileged component (called the deputy) in a system incor-
rectly allows a lesser-privileged component to request or trig-
ger the execution of actions that require elevated privileges.
For example, in an operating system, a user process that is
not allowed to request the download of files from the Internet
could trick the browser process into downloading a file on the
process’ behalf. In this case, the browser acts as the confused
deputy, as it did not correctly check whether the requested
action is permitted and performed actions on behalf of a user
process that is not permitted to download files, allowing this
process to bypass the operating system’s security policy.

In general, a successful confused deputy attack requires the
attacker to learn about the deputy’s existence and capabilities
and to find a way to make the deputy carry out actions on its
behalf (actions that the attacker cannot perform themselves).

Such requirements are easier to fulfill when one considers the
public nature of the blockchain, which allows one to retrieve
the bytecode of any deployed smart contract. These ideal
conditions, in turn, enable the development of large-scale
automated analyses that identify confused contracts and their
associated possible targets.

The core intuition behind the confused contract vulnerabil-
ity is as follows. First, the confused contract must include at
least one call to another smart contract (as discussed in Sec-
tion 2.4). Second, the attacker must be able to influence the
arguments of such a call to control both the target contract and
the target function. Third, the attacker-chosen function in the
target contract must perform a security-sensitive action that
depends on the identity of the caller (e.g., based on the value
of msg.sender). As a result, the confused contract performs
such actions on behalf of the attacker.

In this work, we focus on two scenarios: (1) a target con-
tract performs persistent storage manipulations when called
by a confused contract, or (2) assets of the confused contract
stored in a target contract are directly transferred to an account
of the attacker’s.

The first scenario leverages the confused contract’s priv-
ileges to modify the target contract’s storage and can thus
enable a more complex attack chain – for example, this hap-
pened in the PolyNetwork attack. On the other hand, the latter
scenario has an immediate effect on the confused contract,
whose assets are instantly lost.

3.1 Confused Contract Example

Consider a simple example showing how a developer mistak-
enly creates a smart contract vulnerable to a confused contract
attack.

4

1 contract TradingBot
2 {
3 struct Op { address target; bytes calldata;}
4 function execute(Op[] memory ops) public
5 {
6 uint i;
7 for (i = 0; i < ops.length; i++)
8 ops[i][0].target.call(ops[i][1]);
9 }

10 }

Figure 2: Solidity code of the TradingBot. The execute
function receives a list of tuples (Line 4) that are later used to
make flexible, external function calls (in Line 8).

1
2 contract xyzToken
3 {
4 mapping (address => unit) public vault;
5
6 function transfer(address dst,uint256 val) public
7 {
8 address src = msg.sender;
9 require(vault[src] >= val);

10 vault[src] = sub(vault[src], val);
11 vault[dst] = add(vault[dst], val);
12 return true;
13 }
14
15 function balanceOf(address addr) public
16 {
17 return vault[addr]
18 }
19 }

Figure 3: Solidity code of a contract implementing a custom
crypto-currency. The function transfer, provided by the
standard ERC20 [42] interface, updates the persistent storage
of the xyzToken contract according to the passed parameters.
The function balanceOf returns the amount of token held by
the input address addr.

Alice wishes to implement a trading bot by creating a con-
tract called TradingBot. This contract maintains custody of
some tokens and, when directed by the owner (who is Alice),
it can exchange one type of token for another. Alice knows
that the DeFi ecosystem is changing rapidly, and she would
like to remain forward-compatible with future types of ex-
changes. However, the various exchanges all have different
APIs, and moreover, she does not know what exchanges might
exist in the future.

Alice decides to implement her trading bot as illustrated
in Figure 2. Specifically, she writes an execute function that
accepts a list of trading operations ops as input and then exe-
cutes them in a loop. This design is actually directly inspired
by similar bots on the Ethereum chain, and gives Alice the
flexibility to construct the appropriate list of calls as she sees
fit. In particular, Alice is free to encode any new exchange

function’s interface as she observes them deployed in the
future.
Benign Use Case. In the regular use case, Alice uses her
trading bot to exchange her tokens. For example, consider
Figure 4, which shows Alice trying to exchange xyz tokens
for abc tokens. The transaction begins with Alice invok-
ing the execute function of the TradingBot with the ap-
propriate arguments (Tx1 in Figure 4). Instructed by Alice,
the TradingBot directly invokes the xyzToken’s transfer
function (Figure 3), which modifies the xyzToken contract’s
persistent storage to reflect that 100 xyz tokens are moved
from the TradingBot account to the exchange account, DEX.
This represents the payment for the token exchange (iTx1 in
Figure 4). After the first call, the TradingBot is instructed
to call the DEX contract’s swap function and specifies the
amount of abc tokens it would like to receive as the result
of the exchange operation (iTx2 in Figure 4). DEX checks
for the appropriate amount of payment (not illustrated here),
and then transfers 50 abc tokens (represented by iTx3 in
Figure 4) to TradingBot using the transfer function in the
abcToken contract, whose implementation is identical to the
one in Figure 3. The transaction then completes.
Malicious Use Case. Due to the fact that the TradingBot’s
execute function is marked as “public”, and there is no
access control mechanism in place, any unprivileged user
can interact with it. Hence, an attacker, Mallory, can craft
CALLDATA to invoke TradingBot’s function execute
(Tx2 in Figure 4). In her attack, Mallory instructs the
TradingBot to call xyzToken’s function transfer, sending
all of TradingBot’s xyz tokens balance to Mallory (iTx4 in
Figure 4). With the same process, Mallory can re-use the same
attack to take ownership of all TradingBot’s abc tokens.
Discussion. The two fundamental enablers for the exploit of
the confused contract vulnerability are the following: First, the
identity of the TradingBot can be “stolen” to communicate
with other contracts because the attacker controls the input
to the call in the execute function (as illustrated in Figure 2,
Line 5). Second, there exists on the blockchain a second
contract (target contract) that holds assets on behalf of the
TradingBot. Here, the xyzToken contract is an instance of a
target contract. Both conditions are necessary for a confused
contract vulnerability to exist.

For this specific example, to remove the vulnerability, Al-
ice would need to validate the identity of any address that
is interacting with her TradingBot. In particular, she could
implement an access control routine that checks the value
of msg.sender before performing any cross-contract interac-
tions.

3.2 Confused Contract Attacks

In this work, we defined an attack as a confused contract
attack if it satisfies the following three requirements:

5

TradingBot (TB) xyzToken abcTokenDEX

execute(
 xyzToken.transfer(DEX,100),
 DEX.swap(xyz,abc)
)

transfer(DEX, Val: 100)
msg.sender = A
tx.origin = A

msg.sender = TB
tx.origin = A

swap(xyz, abc)

msg.sender = TB
tx.origin = A

msg.sender = DEX
tx.origin = A

transfer(TB, Val: 50)

vault[TB] = 250 - 100 = 150
vault[DEX] = 300 + 100 = 400

vault[DEX] = 250 - 50 = 200
vault[TB] = 10 + 50 = 60

Mallory (M)

execute(
 xyzToken.transfer(M,150),
)

msg.sender = M
tx.origin = M

msg.sender = TB
tx.origin = M

transfer(M, Val: 150)

vault[TB] = 150 - 150 = 0
vault[M] = 0 + 150 = 150

Storage write (w)

Storage write (w)

Storage write (w)

Benign
Use Case

CALL

Tx2

Tx1

Malicious
Use Case

Alice (A)

(iTx1)

CALL
(iTx2)

CALL
(iTx4)

CALL
(iTx3)

Figure 4: Overview of benign and malicious use cases when leveraging the TradingBot contract to operate on the blockchain.
The solid arrows correspond to transaction Tx, while the dashed arrows correspond to internal transaction iTx. TB executes
iTx1-3 in response to Tx1 sent by Alice A. Later, the attacker M sends a malicious transaction, Tx2, to TB, exploiting its identity
to transfer all the TB tokens to M. In the malicious use case, the contract TB is the confused contract, and the contract xyzToken is
the target contract.

(R1) A successful attack needs a pair of contracts: a confused
contract Cc and a target contract Ct. The confused contract Cc
contains a public function that serves as an entry point for the
attacker.
(R2) The execution of a public function in Cc leads to a
cross-contract invocation (a call) whose tAddr and tFunc
arguments (see Section 2.4) can be controlled by the attacker.
(R3) The attacker uses their control over the “open” call in
Cc to invoke a function in Ct, and this function performs
modifications to the Ct persistent storage only when the value
of msg.sender is the address of the confused contract Cc.
That is, the target contract Ct associates some privileges (e.g.,
access to protected storage) with the confused contract Cc. By
accessing the target contract through the confused contract,
the attacker is able to trigger actions in Ct with the privileges
of Cc.

When the three aforementioned requirements are satisfied,
an attacker may perform security-critical actions, such as
writing attacker-controlled values in the persistent storage of
the target contract or directly drain the assets of the confused
contract.

Given (R3), to “steal” the identity of a confused contract
during a cross-contract interaction, we want to consider only
opcodes that update the msg.sender value at each internal
transaction (iTx), and allow a Ct to perform modifications

of its persistent storage. According to the semantics of the
communication opcodes introduced in Section 2.4, CALL and
CALLCODE are then the only opcodes that can be used for
a confused deputy attack. In fact, a STATICCALL does not
allow a Ct to perform write operations on the storage, while a
DELEGATECALL does not update the msg.sender value when
creating an iTx, and therefore we consider both of them out of
scope. Furthermore, even if compliant with R3, we decided to
ignore the CALLCODE opcode because it has been deprecated
in the EVM in favor of DELEGATECALL [14]; in addition, it is
used in less than 0.02% of the contracts in our dataset.

4 Approach

To identify the requirements necessary for a confused con-
tract attack on the blockchain (R1-3 discussed in Section 3.2),
we developed KAI. Figure 5 presents an overview of our sys-
tem. In the following paragraphs, we describe each one of the
four steps in our analysis.

1 Bytecode Lifting and CFG Construction. To begin,
KAI takes the smart contract’s EVM bytecode as input, lifts
it to an intermediate registry-based representation, and runs
a state-of-the-art CFG reconstruction analysis and constant
propagation procedure using Gigahorse [27].

6

2 Call Inspector. Once the CFG is built, KAI statically
checks if the contract contains any CALL opcodes. If so, the
system analyzes each one to understand if the CALL’s argu-
ments tAddr and tFunc can be controlled by the attacker. To
do this, KAI first statically verifies that both arguments are
not constant (if they are constant, they cannot be controlled
by the attacker). Then, KAI uses the reconstructed CFG and
callgraph to identify entry points (that is, public functions)
that are connected to the CALL. Starting from an entry point,
KAI initiates a symbolic execution directed toward the CALL
opcode, using fully symbolic input. Note that the symbolic
input represents the CALLDATA that an attacker would send
as part of a (malicious) transaction Tx. After reaching the
CALL opcode location, KAI extracts the path constraints (for
the path from the entry point to the CALL). Using these con-
straints, the system asks the solver to find a solution for the
symbolic CALLDATA that is used as the input. If such a so-
lution exists, KAI attempts to infer the relationship between
the CALLDATA and the tAddr/tFunc arguments of the CALL.
Whenever both the tAddr and tFunc values can be chosen
by the attacker, the two attack requirements (R1 and R2) are
satisfied. As a result, the contract under analysis is tagged as
a confused contract candidate (Cc).

3 Path Feasibility Validator. We then verify the feasibil-
ity of all confused contract warnings using the Path Feasibility
Validator. This component verifies, using a local blockchain
instance, if it is possible in practice to use the synthesized
(concretized) CALLDATA to reach the target CALL. This al-
lows the tool to remove warnings that stem from imprecisions
in our symbolic execution.

4 Checkers. Finally, we process the filtered warnings
with two checkers to verify whether requirement R3 holds:
the Generic Checker and the Token Checker. The Generic
Checker finds Cc-Ct pairs where the confused contract Cc has
any special privilege to modify the target contract Ct’s storage.
Similarly, the Token Checker finds target contracts where the
confused contract holds (or held in the past) any balance of
digital assets. The warnings created by such checkers are then
examined by an analyst to verify whether it is possible to
create an end-to-end exploit.

In the following sections, we discuss our approach in more
detail.

4.1 Call Inspector

The Call Inspector receives as input the intermediate registry-
based representation of a contract’s EVM bytecode and its
CFG (from Step 1). It locates and inspects all CALL opera-
tions and checks whether the contract meets the requirements
R1-2 for a confused contract vulnerability.

We first leverage the results of the constant propagation
from Step 1 (Figure 5) to check whether the tAddr/tFunc
arguments are constants. In such cases, it would be impos-
sible for an attacker to influence their values through the

CALLDATA, hence we discard the CALL instance. Otherwise,
we use symbolic execution to understand if an attacker’s input
can control the argument values.

The possible entry points for our analysis are all public
functions of the smart contract for which a static path exists
to the target CALL instruction. To identify such entry points,
we use the previously-generated CFG and callgraph. After
identifying a valid entry point (satisfying R1), we generate
a fully-symbolic byte string of 1,024 bytes and set it as the
input argument of the corresponding function. Note that the
generated symbolic byte string models the CALLDATA that
an attacker would send to the smart contract in a transaction.

At this point, we begin the symbolic exploration of the
smart contract’s code from the selected entry point.

4.1.1 Symbolic Exploration

The goal of the symbolic execution analysis is to determine
whether an attacker can control the values of tAddr and
tFunc for one of the CALL instructions (this is R2). To this
end, we designed a symbolic execution engine augmented
with a set of features that allow us to fine-tune the code explo-
ration, aiming at a sweet spot between generality (finding as
many confused contracts as possible) and performance (avoid-
ing path explosion). Our engine employs a state-of-the-art,
fully symbolic memory model [53] with an extension pro-
posed by Falke et al. [22]. In the following, we introduce a
few important features (F) of our symbolic execution engine.
(F1) Directed Exploration. We employ directed symbolic
execution [40] toward previously-identified target CALL in-
structions, using the inter-procedural CFG provided by 1 .
In particular, during the symbolic exploration, we use static
information from the CFG to prune all paths that do not lead
to the target CALL opcode.
(F2) Partially Concrete Storage. The execution of a smart
contract’s code does not happen in a vacuum. That is, in
addition to the input provided in the transaction (as discussed
in Section 2.4), the execution also depends on the state of the
blockchain.

We extend our symbolic storage model with partially con-
crete storage support. This means that when the program
reads from storage at a concrete index, we fetch the corre-
sponding concrete value(s) from the blockchain at a certain
(fixed) block number1. Such a storage model allows us to
proactively discard states that are not reachable given the
on-chain storage values.
(F3) Partially Concrete Execution Context. This feature
is related to the previous one (F2). Specifically, we keep
the input to a function (its CALLDATA) symbolic. However,
our execution engine allows for the partial concretization
of the execution context (in addition to the storage). That
is, we set the msg.sender and the tx.origin to a concrete

1To facilitate reproducibility, we fix an arbitrary reference block number
16380000. We discuss this choice in Section 6.

7

addr:
0xabcde

Call
Inspector

Generic
Checker

Token
Checker

Cc

KAI

Lift
&

CFG

Cc&Ct

Cc&Ct

Path
Feasibility
Validator

Figure 5: KAI Overview. The analysis pipeline follows the order of the circled numbers. Components 1 - 3 verify the
requirements R1-2 for a confused contract vulnerability. Component 4 verifies instead R3.

address value that we control. Again, this allows us to discard
symbolic states that are not reachable given the on-chain state.
(F4) Precise Handling of SHA3. The SHA3 hash function is
frequently used in smart contracts. For example, the tFunc
argument of a CALL can be computed by taking the SHA3 of
a string (the function name), and keeping the first 4 bytes
of its result (as discussed in Section 2.4). In fact, SHA3 is
used so frequently that the EVM includes a dedicated op-
code [65]. Unfortunately, the precise handling of the SHA3
opcode poses a non-trivial challenge for symbolic execution.
Given an offset in memory and a size S, the SHA3 opcode
calculates the KECCAK256 hash of the S bytes starting at the
target offset. This cryptographic operation cannot be symboli-
cally analyzed [11]. For this reason, different strategies were
proposed to address this challenge [5, 25, 32, 38, 47]. In our
symbolic execution engine, we use the approach proposed
by Frank et al. [25]. Whenever we obtain solutions for the
CALLDATA input, we also attempt to get solutions for the
SHA3 operations observed during the symbolic execution. We
do this by first concretizing the size S and the corresponding
input buffer at the target offset and then calculating the value
of the KECCAK256 operation, which is assigned to the result
variable of the SHA3 opcode.

4.1.2 Constraint Solving

When our symbolic execution engine reaches the target CALL
operation, we inspect the symbolic state at this point. Specifi-
cally, we extract the path constraints and query our underlying
solver, Yices2 [13], to obtain a concrete solution (concrete
values) for the symbolic CALLDATA, as well as for the tAddr
and tFunc arguments.

If the solver is not able to find a solution, this means that we
cannot provide an input (CALLDATA) that reaches the CALL.
On the other hand, if the solver can determine a solution,
we have found an input that reaches the CALL, together with
concrete values for the CALL’s arguments.

To understand if the argument values of tAddr and tFunc
directly depend on the CALLDATA, and hence, are under the

attacker’s control, we employ a strategy based on finding path-
preserving CALLDATA modifications. To this end, we first
check whether the tAddr/tFunc arguments can be influenced
by any symbolic values that do not come from CALLDATA.
Such values can be return values from external contract calls
(that are not modeled) or storage reads with a symbolic index.
To identify these cases, we force the solver to fix the initial
concrete solution for CALLDATA while generating a different
solution for tAddr and tFunc. If the solver can change the
values of tAddr and tFunc without changing CALLDATA,
we assume that something else along the path influences such
arguments. Otherwise, we assume that the values of tAddr
and tFunc only depend on the CALLDATA.

However, it is not enough to prove that the tAddr and
tFunc arguments depend on the CALLDATA. In addition, we
also require that the attacker has some freedom over the actual
values of the arguments. To check this, we query the solver
for a new and different solution for the symbolic variables
in CALLDATA, tAddr, and tFunc. If the solver can find a
satisfying assignment, we conclude that there is a way for an
attacker to influence the values of tAddr and tFunc via bytes
in the CALLDATA. This indicates that R2 is satisfied.

The astute reader will observe that we only checked for
two different solutions. In theory, this is a very narrow defini-
tion of “sufficient freedom” over all possible argument values.
However, we find that, in practice, most contracts either en-
force one specific value or provide complete freedom for the
attacker. Hence, checking for two solutions serves as a good
proxy for complete freedom.

4.2 Path Feasibility Validator
Our symbolic execution analysis is not sound. For example,
we do not follow calls to external functions (in other con-
tracts), and we use partially concrete storage and execution
context. Hence, in some cases, KAI reports that an attacker
can reach and control a target CALL instruction when this is
not possible. This can occur when, for instance, the confused
contract’s code invokes an external contract to sanitize the

8

value of the msg.sender before reaching the target CALL.
That is, the value of the msg.sender is sent to an external
“governance contract” that checks if the account is allowed
to operate on the confused contract. Of course, if the smart
contract included the check directly, we would properly detect
this case.

To filter out false positives, such as the “governance con-
tract” cases above, we leverage an implementation of the
EVM [21] to execute the confused contract’s bytecode, sup-
plying the concrete CALLDATA value generated during Call
Inspection (Figure 5, 2) as input. In particular, the validator
provides a complete execution environment to the contract,
simulating its execution on the blockchain and accounting for
checks performed outside of its code. If this step is success-
ful, we have strong evidence that the synthesized CALLDATA
allows us to reach the target CALL instruction. We provide
a more complete discussion of potential false negatives and
false positives in Section 5.

4.3 Checkers
At this point, we have identified a confused contract that
allows an attacker to control the arguments of a call invoking
an external function. While this is of concern, one more factor
is still required for a successful attack. Such a factor is a
second (target) contract that holds some privilege (e.g., access,
assets) on behalf of the confused contract—a requirement
that is captured by R3. To this end, we apply two analyses: a
Generic Checker and a Token Checker.
Generic Checker. The purpose of this checker is to identify
cases where a target contract has allocated some state on
behalf of the confused contract.

Finding such target contracts Ct on the blockchain is not a
trivial task. In fact, one would potentially have to analyze all
existing contracts (∼54 million contracts at the time of writ-
ing) to determine whether they have any relationship with a
given confused contract Cc. To simplify this process and make
it scale, we narrow our search to only those contracts that had
any prior interactions with Cc. More precisely, we scan the
blockchain history and extract all the addresses of contracts
Ct that were the target of an internal transaction (iTx) coming
from a given Cc. We believe that this makes intuitive sense: If
a certain target contract allocates state on behalf of another
source contract (or user account), such source contract (or
user) will likely have invoked the target contract.

The Generic Checker first replays each historic transaction
iTx – which was sent by the confused contract – in a locally
simulated blockchain environment and collects an execution
trace. Then, it replays the transaction again, but this time, we
change the msg.sender of the iTx to an arbitrary address.
If we detect any differences between the two executions in
terms of writes to persistent storage, we raise a warning.
Token Checker. The goal of the Token Checker is to de-
termine whether the confused contract holds some tokens

(cryptocurrency) that an attacker might be able to steal. In
contrast to the Generic Checker, the Token Checker can de-
tect relationships between a confused contract Cc and a target
contract Ct even if they never interacted. This is because we
can limit our analysis to target contracts with certain types of
digital assets. To make this analysis scale, we limit the anal-
ysis to token contracts based on the ERC-20 and ERC-721
standards [42, 44]. These standards define interfaces used by
developers to write smart contracts that implement custom
digital assets living on the blockchain (e.g., cryptocurrency
tokens, NFTs). The goal of the Token Checker is to under-
stand if a given confused contract Cc currently holds (or held
in the past) any digital assets. When this is true, we raise a
warning.

A straightforward way to identify the number of tokens
owned by a confused contract Cc is to call the standardized
method balanceOf available in ERC-20/ERC-721-based con-
tracts. However, this approach would be very inefficient. In
fact, one would have to call the balanceOf methods of all
possible token contracts Ct, for every possible block. Instead,
we collect the balance information using the transfer event
logs, a standardized log event emitted on the blockchain when-
ever an ERC-20/ERC-721 token is transferred to, or from, a
contract. Summaries of such log events allow us to determine
the number of tokens that were owned by a confused contract
at any point in time.

5 Evaluation

For all our experiments, we use three servers equipped with
300Gb of RAM and dual Intel(R) Xeon(R) Gold 6330 CPUs.
We use GNU Parallel [56] to parallelize our tasks.
Dataset Information. We extracted all smart contract ad-
dresses created in the 24-month period from December 2020
to December 20222. This accounts for a total of 2,335,193
smart contracts. When trying to obtain their bytecode, we
observed that 86,525 contracts (∼3.84%) self-destructed in
the same block when they were created. Thus, we were left
with a total of 2,248,668 smart contract binaries. Within
our dataset, we identified 307,957 (∼13.69%) contracts with
unique SHA256 hashes of their respective bytecode.

To motivate our decision to perform binary-only analysis
(instead of relying on source code), we collected information
regarding the availability of source code for the contracts in
our dataset. We observe that when considering only unique
values for the contracts’ bytecode, source code is not available
for 35.8% of them. Interestingly, when looking at all contracts
(without discarding duplicates), the percentage of contracts
with no source code increases to 48.4%. In Figure 6, we show
the availability of source code as it relates to the size of the
contracts’ bytecode. This data suggest that the fraction of
contracts without source code decreases as the contracts grow

2Corresponding to blocks in the range 11363270–16086235.

9

larger. Nevertheless, even with large dApps, source code is
frequently not available, which supports our decision to im-
plement binary-only program analysis techniques. In Table 1,
we show a summary of source code availability with a split at
5Kb for the size of contracts’ bytecode’s.

0 5000 10000 15000 20000 25000
Size (bytes)

103

104

105

106

of

 C
on

tra
ct

s

source available
no source

Figure 6: Correlation between bytecode size and availability
of source code for non-unique contracts.

0 20 40 60 80 100 120 140
of Calls

100

101

102

103

104

105

106

of

 C
on

tra
ct

s

Unique Contracts
Total Contracts

Figure 7: Distribution of the number of CALL opcodes for
unique and non-unique contracts in our dataset.

5.1 Confused Contracts

Static Analysis. We obtained CFG reconstruction and static
analysis results by running Gigahorse [27] on all the contracts
with a timeout of 30 minutes and a memory limit of 50 Gb.
After this analysis, we discarded 17,996 (0.77%) contracts
for which Gigahorse failed to provide results and remove an
additional 1,538,365 (65%) smart contracts that do not contain
any CALL opcode. As illustrated by Figure 7, many of the
remaining contracts include only a relatively small number

Has Source No Source
Unique Total Unique Total

Small Size (<5Kb) 58,869 1,113,287 54,933 912,392
Large Size (≥5Kb) 138,765 159,070 55,390 63,919

Table 1: Source code availability for smart contracts in our
dataset considering unique and non-unique code.

of CALL instructions, but with some outliers that contain a
considerable amount. We advance to the next analysis step a
total of 692,307 smart contracts.

Call Inspector. We ran our Call Inspector analysis (discussed
in Section 4.1) on all 692,307 contracts. Given a contract, we
identify all its CALL opcodes and discard the ones for which
Gigahorse reported that at least one of the tAddr or tFunc
arguments is constant. For the remaining calls, we performed
symbolic execution using a timeout of 30 minutes. As we
discuss in Section 4.1.1 (F2&F3), our analysis extracts con-
crete values from the persistent storage whenever we access it
with a fully concrete index. Since concrete persistent storage
values can be different for contracts even when their bytecode
is identical, for this analysis stage we consider non-unique
contracts.

Results Discussion. The (symbolic execution) analysis of all
contracts took approximately 54 hours, and it processed a total
of 780,836 CALL(s)3. As illustrated in Figure 8, most of the
CALLs were analyzed in less than a minute, while our engine
encountered a timeout for 29,400 CALL instances (3.77%).
KAI flagged 416,163 CALLs (53.3%) as unreachable during
symbolic execution (e.g., there are checks on msg.sender
preventing arbitrary accounts from reaching the call), 333,633
CALLs (42.73%) reachable with non-controllable arguments of
the CALL, and, finally, 1,640 (0.21%) reachable CALL opcodes
with controllable tAddr and tFunc. Such CALLs belong to
contracts that are potentially vulnerable to a confused contract
attack. To shed some light on the potential misclassification of
controllable CALL opcodes as non-controllable, we randomly
sample 20 CALLs in distinct contracts and manually verify
whether they are indeed non-controllable. For all samples, we
confirm the results of our analysis.

In the next step, we used the Path Feasibility Validator
on the 1,640 contracts. This step reduced the number to 529
confused contracts for which we can replay inputs that reach
the CALL instruction (and the analysis believes that the call
arguments are under the attacker’s control). As discussed in
Section 4.2, our validation checks the reachability of a target
CALL opcode, but it does not consider whether a transaction
successfully terminates – without reverting – after having
reached the call. Hence, false positives are still possible, e.g.,
the msg.sender might be checked after the call.

3A contract can contain multiple CALL opcodes.

10

0 200 400 600 800 1000 1200 1400 1600
Analysis Time (s)

102

103

104

of

 C
AL

Ls

Figure 8: Distribution of the analysis time spent by symbolic
execution to mark a CALL as controllable or non-controllable.

5.2 Checkers
In the final step, we applied our two checkers (as described in
Section 4.3) to the 529 confused contracts.
Generic Checker. The Generic Checker identified 32 con-
tracts with at least one historic interaction on the blockchain
in which differences in persistent storage writes were ob-
served when changing the msg.sender. Specifically, we de-
tected some potentially-sensitive persistent storage writes
which could be performed by the confused contract but not
by an arbitrary contract.
Token Checker. The Token Checker reported that 52 con-
tracts held a certain amount of cryptocurrency tokens (ERC20
or ERC721 contracts) for at least one block. In this scenario,
a successful exploitation of a confused contract attack can, or
could have, directly caused the transfer of digital assets from
the confused contract to the attacker’s account.

5.3 Confused Contract Exploitation
In Section 5.2, we reported that KAI found 84 confused con-
tracts and associated target contracts. However, even if our
tool successfully reported conditions for confused contract
attacks, one important question remains: is it possible in prac-
tice to generate an exploit? To answer this question, we manu-
ally investigated the flagged confused contracts and attempted
to write end-to-end exploits. One peculiarity of smart con-
tracts’ exploitation is that once the effects of the exploit are
observed, i.e., modifications to the persistent storage, they
will be committed only if the continuation of the execution
terminates successfully (i.e., it does not revert). Hence, even
if it is sometimes possible to obtain favorable conditions for
an exploit to produce its effects, it might not be feasible to
reach the end of the execution without reverting its changes,

which prevents any possible harm. Therefore, we confirmed
all exploits created at this step by executing them in a local
version of a real blockchain environment [21].
Generic Checker Warnings. After looking into the 32 warn-
ings for confused contracts generated by the Generic Checker,
we found that one of them interacted in the past with the Sea-
port [36] smart contract: an ERC-721 token marketplace. We
crafted an exploit that forces the confused contract to incre-
ment an order counter (associated with the confused contract)
in the persistent storage of the Seaport contract. It seems that
this could lead to security issues. Specifically, in Figure 9,
we show a snippet from the Seaport contract, where a devel-
oper left a comment stating that the order increment operation
is sensitive and restricted to offerers, as it leads to a cancel-
lation of their orders. Note that the vulnerability is not to
be attributed to the Seaport Marketplace, but, rather, to the
confused contract with controllable CALL’s arguments.

1 /* @notice
2 * Cancel all orders from a given
3 * offerer with a given zone in bulk
4 * by incrementing a counter.
5 *
6 * Note that only the offerer may increment the

counter.
7 *
8 * @return newCounter The new counter.
9 */

10 function incrementCounter() external returns
(uint256 newCounter);

Figure 9: The incrementCounter function in Seaport. The
developers explicitly noted that only an offerer may incre-
ment the counter. A confused contract can be forced by any
unprivileged user to violate this requirement.

For the remaining instances in this category, we could not
create exploits that would cause any harm. In 28 cases, the
confused contract did check the msg.sender after the con-
trollable CALL instruction but before terminating its execution
(and, thus, the contract reverts). In 2 other cases, we could
not fully control the target CALL instruction because of the
additional checks on the CALL arguments that were not cap-
tured during our symbolic analysis. For example, in some
cases, only specific solutions were allowed to be used as the
tAddr in the confused contract call, preventing us from call-
ing the identified target contracts and their functions. Finally,
we found one case where the attacker can control the CALL,
but we could not find any security-relevant writes to persis-
tent storage in the target contracts. However, in this case, the
confused contract is vulnerable and could be exploited in the
future.
Tokens Checker Warnings. The Token Checker identified
52 confused contracts. We first ordered these contracts by the
maximum total value in USD dollars that they held at any
point in time. We then manually examined all contracts with

11

a value greater than $100, which yielded 23 contracts. During
this analysis, we successfully developed exploits for 12 of
them. That is, we were able to demonstrate the possibility
of transferring the assets owned by a confused contract (for
a specific token) to an account of an attacker’s choice. All
our exploits work by manipulating the input of the confused
contract’s public function so that, in the arguments of the
CALL, the target address targetAddress is the address of a
token contract and the target function tFunc is the transfer
function of the contract [43], which sends the assets of the
confused contract to the attacker-specified address.

In Table 2, we show the results of our findings. Note that
we report the maximum values of US dollars associated with
the tokens held by a confused contract, but we detected many
other exploitation opportunities for smaller values and differ-
ent time windows. Moreover, the identified exploits also allow
the attacker to compromise any assets the confused contracts
could have in the future. Regarding the 11 warnings for which
we could not develop an exploit, 3 of them managed a total
value of approximately a million dollars. However, we were
unable at the time of writing to create successful attacks due
to the high complexity of their logic. For 8 of them, we were
unable to set the tFunc to the right contract target. Interest-
ingly, all the confused contracts that we could exploit do not
have source code available. This strengthens our belief that
we need to develop analysis techniques that directly operate
on EVM bytecode to improve the security of the Ethereum
ecosystem.

Token Block Span Val

1 DAI [12] 14104828 146 $838,436
2 DAI [12] 11469710 476 $190,090
3 BAS [2] 11454250 2 $12,610
4 Hegic [29] 11492550 42 $10,007
5 wETH [63] 13574103 12,199 $2,404
6 wETH [63] 15625577 14,867 $1,438
7 wETH [63] 15645205 651 $1,405
8 wBTC [62] 15200611 1 $993
9 LooksRare [35] 14634155 1,927,641 $883

10 LUSD [37] 15451410 62 $391
11 wETH [63] 15596427 1146 $261
12 wETH [63] 14170312 19,396 $133

Total $1,058,961

Table 2: Summary of the discovered exploits for the confused
contract attacks. Token represents the token held by the con-
tract starting from the block in Block for Span blocks. Val is
an estimate in USD dollars of the value of the tokens at the
specific Block in which the opportunity first appeared. We
fetched the price per token using the Uniswap [60] contract.

Ethical Concerns. As some of our exploits can still com-
promise assets on the blockchain, we took some precautions.

First, when developing our exploits, we never execute them
in any public blockchain. Rather, all the exploits were tested
in a local environment that models the real one. Second, when
reporting our results in Table 2, we redacted the confused con-
tracts’ addresses. Finally, in the spirit of responsible disclo-
sure, we attempted to contact the entities behind exploitable
confused contracts—whenever possible—and are currently
awaiting acknowledgment. However, as the individuals be-
hind a smart contract are often unknown, it is not always
practical to report a vulnerability.

6 Discussion and Limitations

Directed Exploration. The correctness of our directed
exploration—discussed in Section 4.1.1 (F1)—relies on the
precision of the underlying state-of-the-art CFG reconstruc-
tion framework [27]. While it is true that inconsistencies in
the CFG analysis would lead to both false positives and false
negatives in our results, we did not observe such a problem in
practice.

EntryPoint Selection. While multiple entry points for each
target CALL can exist, our symbolic analysis selects only one.
KAI could be extended fairly straightforwardly to take into
account more possible paths, which might yield additional
confused contracts. However, in practice, we found that many
contracts only have a few relevant entry points for each CALL.

Reference Block Choice. As described in Section 4.1.1
(F2), we use an arbitrary reference block number 16380000
throughout our analyses. While running our analyses on each
block would be ideal, it is impractical to do so. Moreover,
the benefits of fixing an arbitrary reference block are twofold.
First, this allows for the reproducibility of our results. Sec-
ond, choosing such a recent block allows us to verify that the
vulnerability is currently exploitable.

Constraint Analysis. Our path-preserving-transformation
heuristic (Section 4.1.2) marks tAddr and tFunc as control-
lable even if the attacker cannot manipulate their values ar-
bitrarily. Instead, our heuristic is used to provide evidence
of a connection between values in CALLDATA supplied by
the attacker and the values of the CALL arguments, which
corresponds to our attacker model described in Section 3.2.

Checker Warnings. Our checkers produced a total of 84
warnings for possible confused contracts. However, this num-
ber can be increased by allowing KAI to further explore the
attack surface of confused contract vulnerability via additional
or extended checkers.

Full Exploit Synthesis. While our system automatically pro-
vides the CALLDATA to reach a controllable CALL in a con-
fused contract, the creation of an end-to-end exploit for a
confused deputy attack is currently a manual task.

12

7 Related Work

In this section, we review related work focused on finding
vulnerabilities in smart contracts.

7.1 Individual Contract Analysis
Several systems have been proposed – both by the academic
research community and industry – to identify vulnerabilities
in the code of individual smart contracts.
Static Analysis. Grech et al. proposed Gigahorse [27], a static
analysis framework that translates the stack-based bytecode
of a smart contract into a register-based intermediate represen-
tation that can be used for decompilation. Gigahorse provides
precise CFG reconstruction and numerous out-of-the-box
data-flow analyses that have been used to build effective bug-
hunting systems in the past [4, 26, 33, 54]. A similar approach
has been proposed by Fesit et al. with Slither [23], a static anal-
ysis framework that targets Solidity [55] source code and
supports the detection of a multitude of different bug classes.
Tikhomirov et al. proposed SmartCheck [58], a system that
translates Solidity source code into an XML representation
and identifies bugs with the help of xPath patterns. Finally,
Tsankov et al. proposed Securify [59], a framework that lever-
ages a smart contract’s dependency graph to identify patterns
of vulnerabilities.
Symbolic Execution & Bounded Model Checking. The
first effort in this area has been proposed by Luu et al. with
Oyente [38], followed by Krupp et al. [32] with teEther. In par-
ticular, Oyente aimed at finding bugs such as reentrancy and
transaction-ordering dependence. teEther targeted a similar
class of bugs, but its symbolic execution engine is equipped
with an automatic exploit generation system. In addition, in-
dustry solutions such as Mytrhil [10] and Manticore [41] have
been proposed and became the de-facto standard tools in the
arsenal of professional smart contracts auditors. Finally, Bose
et al. proposed Sailfish [3], a symbolic execution system for
automatically finding state-inconsistency bugs.
Fuzzing. Many systems based on fuzzing techniques have
been developed through the years with the majority of them
requiring Solidity source code: Echidna [28], Harvey [66],
ChainFuzz [7], Foundry [24], and fuzzing-like-a-degen [1].
Currently, we are aware of only one black-box fuzzer: Con-
tractFuzzer [31].

While KAI leverages ideas from prior static analysis and
symbolic execution systems (that inspect individual contracts),
our goal is different. We aim to detect inter-contract bugs that
belong to a new class of bugs that we call confused contract
vulnerabilities.

7.2 Inter-Contract Analysis
While the vast majority of prior work focuses on the detection
of intra-contract bugs, some work has been done to expand

the analysis to inter-contract vulnerabilities.
Ma et al. proposed Pluto [39], a system that first recon-

structs the inter-contract CFG of smart contracts that interact
with each other. Pluto then leverages a symbolic analysis that
explores the CFG to identify different kinds of classic bugs,
e.g., reentrancy, and arithmetic issues. In a similar vein, Frank
et al. proposed ETHBMC [25], a bounded model checker
that supports the symbolic execution of a smart contract byte-
code even when external interactions are present. Liao et al.
proposed SmartDagger [34], a static analysis framework that
combines different data-flow analyses and target functions’
optimizations to discover inter-contract vulnerabilities. Simi-
larly, Ye et al. proposed Clairvoyance [67], a static analysis
tool based on source code that constructs a cross-contract
CFG and then automatically identifies candidate critical paths
for the exploitation of reentrancy bugs. Finally, Xue et al.
proposed xFuzz [68], a system that uses a machine-learning
model to filter out benign cross-contracts execution paths to
eventually increase the efficiency of cross-contract fuzzing.

Different from all this work, our approach is not focused
on the analysis of the smart contract’s code to identify clas-
sic vulnerabilities like reentrancy, but rather, KAI targets a
logic cross-contract vulnerability that arises when particular
requirements are met.

8 Conclusions

In this paper, we introduced the confused contract vulnera-
bility class, a variant of the confused deputy bug performed
in the context of smart contracts running on the blockchain.
In particular, we show how contracts that contain control-
lable invocations of other contracts’ functions (i.e., confused
contracts) can be exploited by unprivileged users to perform
unwanted actions on their behalf, e.g., financial assets trans-
fers from the confused contract to an attacker.

To identify confused contract attack opportunities in the
wild, we developed KAI, a system that we used to analyze
2,335,193 million smart contracts created on the Ethereum
blockchain between block 11363270 and block 16086235.
KAI raised a warning for a total of 529 smart contracts, flag-
ging them as possibly vulnerable to a confused contract attack.

To identify exploitation opportunities for confused contract
attacks in the blockchain, we developed two checkers that
helped us to automatically identify target contract candidates.
Based on these findings, we were able to develop 13 past and
present working exploits for confused contract attacks in the
real world, revealing the potential of compromising digital
assets for more than a million US dollars. With this work, we
wanted to present a few use cases for exploiting a confused
contract vulnerability. However, we believe that the scale
of the problem is far-reaching and that improved tools are
necessary to comprehend the intricate relationships present
within the numerous multi-contract interactions occurring
daily on the blockchain.

13

References

[1] 0xalpharush. Barebones solidity smart contract fuzzer.
https://github.com/0xalpharush/fuzzing-lik
e-a-degen, 2022.

[2] BAS. Bas. https://etherscan.io/token/0xa7ED2
9B253D8B4E3109ce07c80fc570f81B63696, 2023.

[3] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng,
Christopher Kruegel, and Giovanni Vigna. Sailfish: Vet-
ting smart contract state-inconsistency bugs in seconds.
In 2022 IEEE Symposium on Security and Privacy (SP),
pages 161–178. IEEE, 2022.

[4] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard
Scholz, and Yannis Smaragdakis. Ethainter: a smart
contract security analyzer for composite vulnerabilities.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 454–469, 2020.

[5] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security anal-
ysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[6] Chainlink. Reentrancy attacks and the dao hack. https:
//blog.chain.link/reentrancy-attacks-and-t
he-dao-hack/, 2022.

[7] ChainSecurity. Chainfuzz: fast transaction fuzzer for
ethereum smart contracts. https://github.com/Cha
inSecurity/ChainFuzz, 2019.

[8] Deric Cheng. What is gas and how is it used? https://
www.web3.university/tracks/create-a-smart
-contract/what-is-gas-and-how-is-it-used,
2023.

[9] Cointelegraph. Immunefi says it has facilitated $66m in
bug bounties since inception. https://cointelegrap
h.com/news/immunefi-says-it-has-facilitat
ed-66m-in-bug-bounty-payouts-to-whitehats
-since-inception, 2022.

[10] ConsenSys. Mythril. https://github.com/ConsenS
ys/mythril, 2022.

[11] Ricardo Corin and Felipe Andrés Manzano. Efficient
symbolic execution for analysing cryptographic proto-
col implementations. In International Symposium on
Engineering Secure Software and Systems, pages 58–72.
Springer, 2011.

[12] DAI. Dai. https://etherscan.io/token/0x6b175
474e89094c44da98b954eedeac495271d0f, 2023.

[13] Bruno Dutertre. Yices 2.2. In International Confer-
ence on Computer Aided Verification, pages 737–744.
Springer, 2014.

[14] Ethereum. Eip-7: Delegatecall. https://eips.ether
eum.org/EIPS/eip-7, 2015.

[15] Ethereum. Block and transaction properties. https:
//docs.soliditylang.org/en/develop/units-a
nd-global-variables.html#block-and-transac
tion-properties, 2022.

[16] Ethereum. Decentralized finance (defi). https://et
hereum.org/en/defi/, 2022.

[17] Ethereum. Ethereum. https://ethereum.org/en/,
2022.

[18] Ethereum. What is eth? https://ethereum.org/en/
eth/, 2022.

[19] Ethereum. Ethereum accounts. https://ethereum.o
rg/en/developers/docs/accounts/, 2023.

[20] Ethereum. Gas and fees. https://ethereum.org/e
n/developers/docs/gas/, 2023.

[21] Ethereum. A python implementation of the ethereum
virtual machine. https://github.com/ethereum/py
-evm, 2023.

[22] Stephan Falke, Florian Merz, and Carsten Sinz. Extend-
ing the theory of arrays: memset, memcpy, and beyond.
In Working Conference on Verified Software: Theories,
Tools, and Experiments, pages 108–128. Springer, 2014.

[23] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither:
a static analysis framework for smart contracts. In 2019
IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WET-
SEB), pages 8–15. IEEE, 2019.

[24] Foundry. Fuzz testing. https://book.getfoundry.
sh/forge/fuzz-testing?highlight=fuzzing#f
uzz-testing, 2023.

[25] Joel Frank, Cornelius Aschermann, and Thorsten Holz.
ETHBMC: A bounded model checker for smart con-
tracts. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2757–2774, 2020.

[26] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Analyzing the out-of-gas world of smart contracts.
Communications of the ACM, 63(10):87–95, 2020.

[27] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yan-
nis Smaragdakis. Elipmoc: advanced decompilation of
ethereum smart contracts. Proceedings of the ACM on
Programming Languages, 6(OOPSLA):1–27, 2022.

14

https://github.com/0xalpharush/fuzzing-like-a-degen
https://github.com/0xalpharush/fuzzing-like-a-degen
https://etherscan.io/token/0xa7ED29B253D8B4E3109ce07c80fc570f81B63696
https://etherscan.io/token/0xa7ED29B253D8B4E3109ce07c80fc570f81B63696
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://github.com/ChainSecurity/ChainFuzz
https://github.com/ChainSecurity/ChainFuzz
https://www.web3.university/tracks/create-a-smart-contract/what-is-gas-and-how-is-it-used
https://www.web3.university/tracks/create-a-smart-contract/what-is-gas-and-how-is-it-used
https://www.web3.university/tracks/create-a-smart-contract/what-is-gas-and-how-is-it-used
https://cointelegraph.com/news/immunefi-says-it-has-facilitated-66m-in-bug-bounty-payouts-to-whitehats-since-inception
https://cointelegraph.com/news/immunefi-says-it-has-facilitated-66m-in-bug-bounty-payouts-to-whitehats-since-inception
https://cointelegraph.com/news/immunefi-says-it-has-facilitated-66m-in-bug-bounty-payouts-to-whitehats-since-inception
https://cointelegraph.com/news/immunefi-says-it-has-facilitated-66m-in-bug-bounty-payouts-to-whitehats-since-inception
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://etherscan.io/token/0x6b175474e89094c44da98b954eedeac495271d0f
https://etherscan.io/token/0x6b175474e89094c44da98b954eedeac495271d0f
https://eips.ethereum.org/EIPS/eip-7
https://eips.ethereum.org/EIPS/eip-7
https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties
https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties
https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties
https://docs.soliditylang.org/en/develop/units-and-global-variables.html#block-and-transaction-properties
https://ethereum.org/en/defi/
https://ethereum.org/en/defi/
https://ethereum.org/en/
https://ethereum.org/en/eth/
https://ethereum.org/en/eth/
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://github.com/ethereum/py-evm
https://github.com/ethereum/py-evm
https://book.getfoundry.sh/forge/fuzz-testing?highlight=fuzzing#fuzz-testing
https://book.getfoundry.sh/forge/fuzz-testing?highlight=fuzzing#fuzz-testing
https://book.getfoundry.sh/forge/fuzz-testing?highlight=fuzzing#fuzz-testing

[28] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist,
and Alex Groce. Echidna: effective, usable, and fast
fuzzing for smart contracts. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 557–560, 2020.

[29] HEGIC. Hegic. https://etherscan.io/address/0
x584bC13c7D411c00c01A62e8019472dE68768430,
2023.

[30] Everett Hildenbrandt, Manasvi Saxena, Nishant Ro-
drigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Bran-
don Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,
et al. Kevm: A complete formal semantics of the
ethereum virtual machine. In 2018 IEEE 31st Com-
puter Security Foundations Symposium (CSF), pages
204–217. IEEE, 2018.

[31] Bo Jiang, Ye Liu, and Wing Kwong Chan. Contract-
fuzzer: Fuzzing smart contracts for vulnerability detec-
tion. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 259–
269. IEEE, 2018.

[32] Johannes Krupp and Christian Rossow. teEther: Gnaw-
ing at ethereum to automatically exploit smart contracts.
In 27th USENIX Security Symposium (USENIX Security
18), pages 1317–1333, 2018.

[33] Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yan-
nis Smaragdakis. Precise static modeling of ethereum
“memory”. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–26, 2020.

[34] Zeqin Liao, Zibin Zheng, Xiao Chen, and Yuhong Nan.
Smartdagger: a bytecode-based static analysis approach
for detecting cross-contract vulnerability. In Proceed-
ings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 752–764,
2022.

[35] LOOKSRARE. Looksrare. https://etherscan.io
/token/0xf4d2888d29d722226fafa5d9b24f9164c
092421e, 2023.

[36] luckytrader. What is seaport? opensea’s new nft market-
place protocol. https://etherscan.io/address/0
x00000000006c3852cbEf3e08E8dF289169EdE581#
code, 2023.

[37] LUSD. Lusd. https://etherscan.io/token/0x5f9
8805A4E8be255a32880FDeC7F6728C6568bA0, 2023.

[38] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 254–269,
2016.

[39] Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuan-
liang Chen, Lei Qiao, Bin Gu, Huizhong Li, Yu Jiang,
and Jiaguang Sun. Pluto: Exposing vulnerabilities in
inter-contract scenarios. IEEE Transactions on Software
Engineering, 2021.

[40] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and
Michael Hicks. Directed symbolic execution. In In-
ternational Static Analysis Symposium, pages 95–111.
Springer, 2011.

[41] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex
Groce, Gustavo Grieco, Josselin Feist, Trent Brunson,
and Artem Dinaburg. Manticore: A user-friendly sym-
bolic execution framework for binaries and smart con-
tracts. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages
1186–1189. IEEE, 2019.

[42] OpenZeppelin. Erc20. https://docs.openzeppeli
n.com/contracts/3.x/erc20, 2022.

[43] OpenZeppelin. Erc20. https://docs.openzeppeli
n.com/contracts/3.x/api/token/erc20#IERC20
-transfer-address-uint256-, 2022.

[44] OpenZeppelin. Erc721. https://docs.openzeppeli
n.com/contracts/3.x/erc721, 2022.

[45] OpenZeppelin. Reentrancyguard. https://docs.ope
nzeppelin.com/contracts/4.x/api/security#R
eentrancyGuard, 2022.

[46] OpenZeppelin. Safemath. https://docs.openzeppe
lin.com/contracts/2.x/api/math, 2022.

[47] Anton Permenev, Dimitar Dimitrov, Petar Tsankov,
Dana Drachsler-Cohen, and Martin Vechev. Verx: Safety
verification of smart contracts. In 2020 IEEE sympo-
sium on security and privacy (SP), pages 1661–1677.
IEEE, 2020.

[48] PolyNetwork. Enhancing connections between ledgers
by providing interoperability in web 3.0. https://po
ly.network/, 2023.

[49] Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Laz-
zaretti, and Arthur Gervais. Cefi vs. defi–comparing
centralized to decentralized finance. arXiv preprint
arXiv:2106.08157, 2021.

[50] Rekt. Rekt, leaderboard. https://rekt.news/lead
erboard/, 2022.

[51] Kudelski Security Research. The poly network attack
explained. https://research.kudelskisecurity.
com/2021/08/12/the-poly-network-hack-expla
ined/, 2021.

15

https://etherscan.io/address/0x584bC13c7D411c00c01A62e8019472dE68768430
https://etherscan.io/address/0x584bC13c7D411c00c01A62e8019472dE68768430
https://etherscan.io/token/0xf4d2888d29d722226fafa5d9b24f9164c092421e
https://etherscan.io/token/0xf4d2888d29d722226fafa5d9b24f9164c092421e
https://etherscan.io/token/0xf4d2888d29d722226fafa5d9b24f9164c092421e
https://etherscan.io/address/0x00000000006c3852cbEf3e08E8dF289169EdE581#code
https://etherscan.io/address/0x00000000006c3852cbEf3e08E8dF289169EdE581#code
https://etherscan.io/address/0x00000000006c3852cbEf3e08E8dF289169EdE581#code
https://etherscan.io/token/0x5f98805A4E8be255a32880FDeC7F6728C6568bA0
https://etherscan.io/token/0x5f98805A4E8be255a32880FDeC7F6728C6568bA0
https://docs.openzeppelin.com/contracts/3.x/erc20
https://docs.openzeppelin.com/contracts/3.x/erc20
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-transfer-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-transfer-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-transfer-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/erc721
https://docs.openzeppelin.com/contracts/3.x/erc721
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://docs.openzeppelin.com/contracts/2.x/api/math
https://docs.openzeppelin.com/contracts/2.x/api/math
https://poly.network/
https://poly.network/
https://rekt.news/leaderboard/
https://rekt.news/leaderboard/
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/

[52] Clara Schneidewind, Ilya Grishchenko, Markus Scherer,
and Matteo Maffei. ethor: Practical and provably sound
static analysis of ethereum smart contracts. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 621–640, 2020.

[53] Carsten Sinz, Stephan Falke, and Florian Merz. A
precise memory model for Low-Level bounded model
checking. In 5th International Workshop on Systems
Software Verification (SSV 10), 2010.

[54] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos,
Konstantinos Triantafyllou, and Ilias Tsatiris. Symbolic
value-flow static analysis: deep, precise, complete mod-
eling of ethereum smart contracts. Proc. ACM Program.
Lang., 5(OOPSLA):1–30, 2021.

[55] Solidity. Solidity. https://docs.soliditylang.or
g/, 2023.

[56] O. Tange. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[57] theverge. Crypto collapse: Ftx’s fall is one piece of a
long, cold, contagious crypto winter. https://www.th
everge.com/2022/11/10/23450169/crypto-win
ter-ftx-binance-celsius-bitcoin, 2022.

[58] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan
Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and
Yaroslav Alexandrov. Smartcheck: Static analysis of
ethereum smart contracts. In Proceedings of the 1st
international workshop on emerging trends in software
engineering for blockchain, pages 9–16, 2018.

[59] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 67–82,
2018.

[60] Uniswap. Uniswap. https://uniswap.org/, 2023.

[61] Vyper. Vyper. https://vyper.readthedocs.io/e
n/stable/, 2023.

[62] WBTC. Wbtc. https://etherscan.io/address/0
x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599,
2023.

[63] WETH. Weth. https://etherscan.io/token/0
xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2,
2023.

[64] Wikipedia. Sha-3. https://en.wikipedia.org/wik
i/SHA-3, 2023.

[65] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[66] Valentin Wüstholz and Maria Christakis. Harvey: A
greybox fuzzer for smart contracts. In Proceedings of
the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, pages 1398–1409, 2020.

[67] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Ji-
aming Ye, and Tianyong Peng. Cross-contract static
analysis for detecting practical reentrancy vulnerabil-
ities in smart contracts. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 1029–1040, 2020.

[68] Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma,
Haijun Wang, and Jianjun Zhao. xfuzz: Machine learn-
ing guided cross-contract fuzzing. IEEE Transactions
on Dependable and Secure Computing, 2022.

[69] ycharts. Ethereum market cap. https://ycharts.co
m/indicators/ethereum_market_cap, 2022.

16

https://docs.soliditylang.org/
https://docs.soliditylang.org/
https://www.theverge.com/2022/11/10/23450169/crypto-winter-ftx-binance-celsius-bitcoin
https://www.theverge.com/2022/11/10/23450169/crypto-winter-ftx-binance-celsius-bitcoin
https://www.theverge.com/2022/11/10/23450169/crypto-winter-ftx-binance-celsius-bitcoin
https://uniswap.org/
https://vyper.readthedocs.io/en/stable/
https://vyper.readthedocs.io/en/stable/
https://etherscan.io/address/0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599
https://etherscan.io/address/0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599
https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/SHA-3
https://ycharts.com/indicators/ethereum_market_cap
https://ycharts.com/indicators/ethereum_market_cap

	Introduction
	Background
	Blockchain
	Smart Contracts
	Smart Contract Execution
	Smart Contract Invocations

	Motivation and Threat Model
	Confused Contract Example
	Confused Contract Attacks

	Approach
	Call Inspector
	Symbolic Exploration
	Constraint Solving

	Path Feasibility Validator
	Checkers

	Evaluation
	Confused Contracts
	Checkers
	Confused Contract Exploitation

	Discussion and Limitations
	Related Work
	Individual Contract Analysis
	Inter-Contract Analysis

	Conclusions

